Javascript is currently not supported, or is disabled by this browser. Please enable Javascript for full functionality.

   
    Nov 25, 2024  
2020-2021 Undergraduate Catalog 
    
2020-2021 Undergraduate Catalog [ARCHIVED CATALOG]

Computer Engineering, BS


The Bachelor of Science with a major in computer engineering provides a high-quality education by balancing the theoretical and experimental aspects of hardware and software issues. A BS with a major in computer engineering provides excellent job prospects in the engineering and technology sectors.


The Bachelor of Science degree with a major in computer engineering is designed for students who wish to specialize in computer hardware, communication systems, digital signal processing, micro-controllers, real-time and embedded systems. Computer engineering students are exposed to both theoretical and practical issues of both hardware and software in laboratories with state-of-the art equipment. The program provides a strong engineering background, with an understanding of the principles and techniques of computing. A professional degree, which includes a two-term/semester senior design project sequence, prepares the graduates for a career and graduate studies in computer engineering and related fields.

The Bachelor of Science degree with a major in computer engineering is accredited by the Engineering Accreditation Commission (EAC) of ABET (abet.org), (415 N. Charles Street, Baltimore, MD 21201; 410-347-7700).

Program educational objectives


Graduates will:

  1. Have completed projects involving design, evaluation of materials, and management of computational and personnel resources to solve problems in multi-disciplinary teams and exhibit the ability to communicate effectively.
  2. Pursue graduate studies in computer engineering or related disciplines and careers involving VLSI design, real-time systems, communications, and networks or computer systems.
  3. Act responsibly and ethically in their professional conduct and successfully engage in life-long learning.
  4. Complete professional work assignments that exhibit a good balance between software and hardware systems, including software development, design of digital systems, microprocessors, embedded systems, real-time systems and digital communication systems.

Student outcomes


This program will enable students to attain, by the time of graduation: 

  1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
  2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
  3. An ability to communicate effectively with a range of audiences.
  4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
  5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Degree requirements


Hours required and general/college requirements


A minimum of 120 semester hours, of which 42 must be advanced, and fulfillment of degree requirements for the Bachelor’s degree as specified in the “University Core Curriculum ” in the Academics section of this catalog and the College of Engineering  requirements.

Specialization area, 9 hours


Three courses selected from one of the four computer engineering specialization areas listed below.

Note


A maximum of 6 hours of credit in CSCE 4890 , CSCE 4920 , CSCE 4940 , or CSCE 4950  will count toward this degree. The 6 hours may include at most 3 hours in CSCE 4920.

Minor


Optional.

Electives


See CSE faculty advisor.

Other requirements


Foundation courses


Successful completion of foundation courses is based on achieving a C or higher in each course and a cumulative GPA of 2.5.

Students are required to take Engineering Foundation Courses and/or prerequisites to the Engineering Foundation Courses until all foundation courses are successfully completed. Successful completion is a 2.5 GPA for all Engineering Foundation Courses with a C or better in each course.

Successful completion of the foundation courses is required for enrollment in all 3000- and 4000-level courses.

Foundation courses for the degree program include the following.

Major transfer policy


Students enrolled at UNT can transfer into Computer Engineering if they have completed the CSCE foundation courses with a C or better and a cumulative GPA of at least 2.5. The courses are:

Department policies


Policy on Academic Performance, Progression, and Dismissal in the College of Engineering

Students in the College of Engineering will conduct themselves in a professional manner in their interaction with their peers, faculty, staff and the community in general. A student may be dismissed from the college for inappropriate conduct (please refer to the Code of Student Conduct).

Each semester, students are required to take engineering foundation courses and/or prerequisites to the engineering foundation courses until all foundation courses are successfully completed. Successful completion is a 2.5 GPA for all engineering foundation courses with a C or better in each course.

Successful completion of the foundation courses in required for enrollment in all 3000 and 4000 level courses.

A minimum grade of C is required in all courses required in a student’s major for degree completion. Courses include, but are not limited to, engineering, computing, mathematics, laboratory sciences, supporting area, technical elective, technical option, energy elective, and specialization courses.

A minimum grade of C is required in all courses required in a student’s major for prerequisite completion. Courses include, but are not limited to, engineering, computing, mathematics, laboratory sciences, supporting area, technical elective, technical option, energy elective, and specialization courses.

A student making grades lower than C two times in the same course in any College of Engineering foundation course, or in any course required by the major, is subject to dismissal from the College of Engineering, pending a review by the Associate Dean for Undergraduate Studies in the College of Engineering.

A student must maintain good academic standing within the university. Please see “Academic status” and “Regulations governing students under academic suspension” in the Academics section of this catalog.